SOUTHERN RESIDENT KILLER WHALE TASK FORCE PREY POTENTIAL ACTIONS

SUMMARY TABLE OF ALL PREY POTENTIAL ACTIONS DISCUSSED IN 2018

The Table below (Pages 1-7) is intended to be an abbreviated way to see the outcomes of the Prey Working Group discussions on each action. For more detailed information on an action and an explanation of ratings, click the hyperlink embedded in each action name to be directed to the full matrix of considerations. Actions in **Bold** have an effectiveness rating of Medium or High.

Effectiveness: the ability for the action to contribute to SRKW recovery by improving prey abundance

Affordability: High (Under $30million), Medium ($30million-$100million), Low ($100million+)

Ease of Implementation: Considers technical, regulatory, social, and political factors

Timeline of SRKW benefits once action is implemented: Immediate (0-3 years), Intermediate (3-10 years), Long-term (10+ years)

Note: The Prey Working Group would like to stress that there is a great deal of uncertainty related to many of the rankings of the actions considered due to incomplete knowledge. More geographic specificity for each action (this is often pending) and time to source information or create information through models, studies, etc. would/will create greater certainty around this rankings.

<table>
<thead>
<tr>
<th>Action</th>
<th>E</th>
<th>A</th>
<th>I</th>
<th>Timeline for SRKW Benefits</th>
<th>Supporting and Dissenting Opinions on Ratings (if applicable)</th>
<th>Geographic Specificity Progress</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supporting:</td>
<td>Applies to Columbia/Snake but could be elsewhere statewide</td>
<td></td>
</tr>
<tr>
<td>A1. Recommend that Ecology adjust gas caps (match or exceed OR’s gas caps) on the Snake and Columbia rivers to allow flexibility to adjust spill regimes, as needed, to benefit Chinook salmon and other salmonids.</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>Intermediate</td>
<td>Increased spill leads to increased survival rates of migrating fish.</td>
<td>Affordability depends on how much is spilled (125% would be in low affordability category, but other amounts could be medium or high affordability)</td>
<td></td>
</tr>
<tr>
<td>A2. Recommend that Ecology adjust gas caps (match or exceed OR’s gas caps) on the Snake and Columbia rivers and that spill be increased to benefit Chinook salmon and other salmonids.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Even if funds are reallocated away from habitat etc. due to increases in spill, the action has the potential to result in such an improvement to the number of fish successfully migrating that it would be overwhelmingly worth it. Also, other funding sources could be sought to replace those lost.</td>
<td>Spill regime and gas cap not inextricably linked – TF could recommend changing gas caps without changing spill regimes, which would allow flexibility to use the best available science to decide how much spill is beneficial at specific dams/systems, years, etc.</td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Action</th>
<th>E</th>
<th>A</th>
<th>I</th>
<th>Timeline for SRKW Benefits</th>
<th>Supporting and Dissenting Opinions on Ratings (if applicable)</th>
<th>Geographic Specificity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Regional partners review, and where appropriate, revise standards for juvenile survival in river associated with dams</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>Intermediate</td>
<td>Applies Statewide</td>
<td>- Increased cost of changes in spill management would reallocate funding currently going to habitat improvements or hatcheries</td>
<td></td>
</tr>
<tr>
<td>C. Increase survival at predation hot spots near dams</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>Intermediate</td>
<td>Applies Statewide</td>
<td>- Affordability may vary by specific action; reservoir management could be expensive</td>
<td></td>
</tr>
<tr>
<td>D. Where it helps provide safer passage, improve fish screens and eliminate entrainment in diversions at dams. Consolidate diversions to reduce risks to salmon.</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>Intermediate</td>
<td>Applies Statewide</td>
<td>- Very limited opportunity for incremental improvement remains for this action.</td>
<td></td>
</tr>
<tr>
<td>E. Prioritize and fund re-establishment of runs into currently blocked areas above dams in those areas that can successfully produce more salmon.</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Intermediate</td>
<td>See Hydro Action E Matrix for discussion of ongoing and future options</td>
<td>- Effectiveness is variable, depending on location</td>
<td></td>
</tr>
<tr>
<td>F. Remove dams in locations that most benefit Chinook passage</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Intermediate</td>
<td>Analysis Pending Statewide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Increase hatchery production at facilities that most benefit SRKWs and apply measures to remove excess hatchery fish before they reach hatchery</td>
<td>H</td>
<td>M</td>
<td>Intermediate</td>
<td>Supporting:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Increases are essential in the near term for the whales due to dire need for more Chinook</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Disagreement with some that believe wild stocks are not impacted by hatchery fish.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Analysis Pending; WDFW is drafting a decision-making model for potential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Due to carrying capacity issues, habitat improvements are needed for increases to be effective at producing adult fish.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Decisions on production increase locations should consider adjacent wild stock</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hatchery
<table>
<thead>
<tr>
<th>Action</th>
<th>E</th>
<th>A</th>
<th>I</th>
<th>Timeline for SRKW Benefits</th>
<th>Supporting and Dissenting Opinions on Ratings (if applicable)</th>
<th>Geographic Specificity Progress</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>spawning grounds (e.g. weirs, mark-selective harvest)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>It is possible to increase production in some areas without negatively impacting wild stocks (for example see suggestion letter from ODFW) Dissenting: Increased production may increase risk for wild fish recovery. WDFW should proactively coordinate with Regional Organizations to ensure any increased hatchery production aligns with recovery plan goals and objectives, prior to making decisions. This should include evaluation and modeling of risks and benefits, where supported by data. This evaluation should also address populations in the Coast Region, where the focus would be to ensure hatchery production does not result in increased risk to non ESA-listed natural-origin populations. Increased hatchery production is not a long-term goal or solution in itself but instead just one tool to get to larger Chinook abundances. Larger goal is healthy wild Chinook populations and ecosystems. If production is increased it needs to be for a timeframe only (e.g. 10 years) before it is fully analyzed for effectiveness. Do not want this effort to result in a blank check for more hatchery production for other purposes.</td>
</tr>
<tr>
<td>B. Perform actions in hatcheries to increase productivity, smolt-to-adult survival and/or marine survival of Chinook (including but not limited to reducing predation on hatchery fish), adjust return timing and locations to align with whale needs, increase size</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Intermediate</td>
<td>Pilot suggested at a location where increases occur (see above)</td>
<td></td>
<td>Need to better reflect natural run timing and variability. SRKW would benefit from more diverse prey availability throughout the year and selecting for larger fish.</td>
</tr>
</tbody>
</table>

Commented [BPA(1): Make this a hyperlink to the ODFW letter on the box site]
<table>
<thead>
<tr>
<th>Action</th>
<th>EA</th>
<th>I</th>
<th>Timeline for SRKW Benefits</th>
<th>Supporting and Dissenting Opinions on Ratings (if applicable)</th>
<th>Geographic Specificity Progress</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvest</td>
<td></td>
<td></td>
<td></td>
<td>Supporting:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Further limit Chinook harvest in areas important to SRKW foraging</td>
<td>L</td>
<td>H</td>
<td>Immediate</td>
<td>• If we’re serious about SRKWs, then close fisheries as an emergency action with immediate results Dissenting: • Treaty right concerns regardless of whether or not tribes are specifically excluded from harvest limits • Likely low benefit for SRKWs – in Marine Area 7 recreational catch was only 3500 chinook for summer</td>
<td>Marine Area 7 – San Juan Islands</td>
<td>• If any type of closure area is considered (due to vessel and/or prey impacts) then it should not be specific to fishers only, both due to social issues and because it would not be as beneficial to SRKW.</td>
</tr>
<tr>
<td>B. Subsidize or compensate fishers to not fish</td>
<td>L</td>
<td>H</td>
<td>Immediate</td>
<td>Supporting:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• If we’re serious about SRKWs, then we need to reduce harvest because it has immediate results • It’s possible because sport industry has been compensated before and commercial fisheries have had buy-backs in past Dissenting: • Treaty right concerns regardless of whether or not tribes are specifically excluded from harvest limits; low return • Disagreement about including recreational fishers – no mechanism to individually compensate</td>
<td>Marine waters when and where SRKW are actively feeding or likely to be arriving within one month/one week (I don’t know)</td>
<td></td>
</tr>
<tr>
<td>C. Reduce non-targeted fisheries’ impact, including limiting gear types that increase mortality and incentivizing innovative gear types that decrease mortality, and by-catch</td>
<td>M</td>
<td>M</td>
<td>Immediate</td>
<td>Supporting:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Differences geographically w/ west coast fishery (low effectiveness) and AK fishery (high effectiveness) – changes need to happen in AK Dissenting • There is a tribal allocation and treaty right concern</td>
<td>This pertains to coast-wide fisheries but is especially pertinent in AK where there is opportunity for the most improvement</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>E</td>
<td>A</td>
<td>I</td>
<td>Timeline for SRKW Benefits</td>
<td>Supporting and Dissenting Opinions on Ratings (if applicable)</td>
<td>Geographic Specificity Progress</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>D. Negotiate reductions in AK and Canadian fisheries to allow more Chinook to reach WA waters</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Long-term</td>
<td>Supporting: • Already complete, will be in place for 10 years—discussions include some SRKW benefits • Taskforce should still make comments regarding what this should look like in the future</td>
<td>Alaska and Canada</td>
</tr>
<tr>
<td>E. Reduce marine harvest and transfer opportunity to terminal fisheries</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>Immediate</td>
<td>Supporting: • If we’re serious about SRKWs, then we need to reduce harvest because it has immediate results • Significant tribal treaty concerns – action would affect tribes disproportionately and likely result in legal action</td>
<td>West Coast Ocean Fisheries Area</td>
</tr>
<tr>
<td>F. Implement slot size limits to get larger fish to whales, spawning grounds, and hatcheries (put a maximum size limit on catch)</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>Long-term</td>
<td>Supporting: • Could help to get bigger fish the whales • Dissenting • May have impacts to wild stocks. Need full analysis to understand effects • Could have unintended consequence of catch mortality if catch and release rates increased • Fishing derbies would be eliminated</td>
<td>Puget Sound, Coast, and Columbia</td>
</tr>
<tr>
<td>A. Increase the implementation & enforcement of existing local, state and federal habitat protection regulations</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>Immediate</td>
<td>Statewide – see Regional Recovery Organizations priorities</td>
<td>• Any regulation is not a long-term durable fix. Needs to be coupled with significant improvements through acquisition and restoration in habitat</td>
</tr>
<tr>
<td>B. Enhance/change local, state and federal protection regulations, especially for key Chinook/SRKW habitats or areas</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>Immediate</td>
<td>Statewide – see Regional Recovery Organizations priorities</td>
<td>• Any regulation is not a long-term durable fix. Needs to be coupled with significant improvements through acquisition and restoration in habitat</td>
</tr>
<tr>
<td>C. Acquire important Chinook habitat</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Immediate for existing habitat; Long-term for</td>
<td></td>
<td>Statewide – see Regional Recovery</td>
</tr>
<tr>
<td>Action</td>
<td>E</td>
<td>A</td>
<td>I</td>
<td>Timeline for SRKW Benefits</td>
<td>Supporting and Dissenting Opinions on Ratings (if applicable)</td>
<td>Geographic Specificity Progress</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| D. Accelerate habitat restoration by increasing funding significantly to address current regional priorities, including fish blockages in areas most beneficial to SRKW | H | L | M | Intermediate for blockages; Long-term for restoration but an action to ensure sustainability for future generations | Statewide – see Regional Recovery Organizations priorities | Statewide – see Regional Recovery Organizations priorities | Should consider what projects are currently not on the table because of feasibility (moving 15, BNSF rail line, dams) as an opportunity for the governor to make a significant difference.
This is essential in areas where habitat is at carrying capacity and hatchery production increases are desired. |
| E. Create additional or bolster existing habitat protection and restoration incentives for landowners | M | M | H | Immediate for existing habitat; Long-term for habitat needing restoration | Statewide – see Regional Recovery Organizations priorities | Statewide – see Regional Recovery Organizations priorities | Should consider what projects are currently not on the table because of feasibility (moving 15, BNSF rail line, dams) as an opportunity for the governor to make a significant difference.
This is essential in areas where habitat is at carrying capacity and hatchery production increases are desired. |
| A. Remove or alter artificial habitats or breeding locations so they are not as attractive to predators (Pinnipeds and Birds) | L | H | M | Immediate | Statewide where appropriate: Haul out and breeding colony maps available | Statewide where appropriate: Haul out and breeding colony maps available | Should consider what projects are currently not on the table because of feasibility (moving 15, BNSF rail line, dams) as an opportunity for the governor to make a significant difference.
This is essential in areas where habitat is at carrying capacity and hatchery production increases are desired. |
| B. Lethal removal to benefit specific runs and stocks
Pinnipeds
Birds
Fish | M | M | M | Intermediate | Supporting:
Predation has been shown to be a massive issue in some locations limiting Chinook stocks
Dissenting
Uncertainty at ecosystem-wide scale effects and unintended consequences that may not benefit Chinook or SRKW
Emotional issue for mammals and birds and may lead to lawsuits | Statewide – see Regional Recovery Organizations priorities | Statewide – see Regional Recovery Organizations priorities | Should implement on a pilot basis where important SRKW stocks might benefit (due to effectiveness uncertainty)
Will have to be monitoring to assess benefits and discontinue if ineffective |
| C. Lethal removal in order to establish new baseline population levels
Pinnipeds
Birds | M | H | H | Intermediate | Supporting:
Predation has been shown to be a massive issue in some locations limiting Chinook stocks
Dissenting:
Uncertainty at ecosystem-wide scale effects and unintended consequences that may not benefit Chinook or SRKW
Emotional issue for mammals and birds and may lead to lawsuits | Statewide – see Regional Recovery Organizations priorities | Statewide – see Regional Recovery Organizations priorities | Should implement on a pilot basis where important SRKW stocks might benefit (due to effectiveness uncertainty)
Will have to be monitoring to assess benefits and discontinue if ineffective |
<table>
<thead>
<tr>
<th>Action</th>
<th>E</th>
<th>A</th>
<th>I</th>
<th>Timeline for SRKW Benefits</th>
<th>Supporting and Dissenting Opinions on Ratings (if applicable)</th>
<th>Geographic Specificity Progress</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>• Emotional issue for mammals and birds and would be a violations of Migratory Bird Act and MMPA—will lead to lawsuits • Uncertainty at ecosystem-wide scale effects and unintended consequences that may not benefit Chinook or SRKW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Employ new non-lethal hazing or exclusion techniques</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>• Good to keep as alternative to lethal removal, but there are no new methods known and much has already been tried.</td>
</tr>
<tr>
<td>Forage Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Increase Forage Fish populations through: Habitat restoration</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>Intermediate</td>
<td>Supporting • Benefit to reducing predation and increasing salmon survival, but a lot of uncertainty to SRKW • More forage fish will be more positive than negative (even if some eat the same food at juvenile Chinook) Dissenting • Potential negative feedback loop from forage fish consuming juvenile chinook food (zooplankton) • For harvest—treaty right component, relatively low take related to other species</td>
<td>Focus on Puget Sound</td>
<td></td>
</tr>
<tr>
<td>Habitat protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Increase Forage Fish populations through: Harvest reductions</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>Intermediate</td>
<td>Dissenting • For harvest—treaty right component. Relatively low take related to other species</td>
<td>Outer Coast and Puget Sound</td>
<td></td>
</tr>
</tbody>
</table>

Forage Fish notes:
- Focus on Puget Sound
- Consider life history of forage fish relative to size needed for juvenile chinook
- Habitat protection for SRKW will directly benefit forage fish
- Prey for Chinook are sardines, anchovy, herring, sand lance, and smelt
- Habitat impacts from bulkheads in Puget Sound; single family exemption elimination would greatly improve protections.
- Need to accelerate any studies of marine food web to be more confident on effect
- Forage fish recovery planning process is underway

Notes:
- Fish
- D. Employ new non-lethal hazing or exclusion techniques
- A. Increase Forage Fish populations through: Habitat restoration
 - Habitat protection
- B. Increase Forage Fish populations through: Harvest reductions

- Focus on Puget Sound
- Consider life history of forage fish relative to size needed for juvenile chinook
- Habitat protection for SRKW will directly benefit forage fish
- Prey for Chinook are sardines, anchovy, herring, sand lance, and smelt
- Habitat impacts from bulkheads in Puget Sound; single family exemption elimination would greatly improve protections.
- Need to accelerate any studies of marine food web to be more confident on effect
- Forage fish recovery planning process is underway

- Forage fish recovery planning process is underway – need to align efforts
CONSIDERATIONS MATRICES FOR EVALUATING POTENTIAL ACTIONS

Hydro and Dams (structures that impound water)

Emerging issues:
- Provide policy support for Ecosystem based function in Columbia River Treaty Re-Negotiations by identifying SRKW and to help chinook throughout the Columbia Basin
 - This is happening now, but it depends on how much the negotiators are hearing the state’s voice.
 - Interior has committed to giving regions, state, tribes and others – maybe there’s some opportunity to express that we’re all interested in having them consider SRKW as part of the ecosystem considerations.
 - Timeline is not swift. Not all parties are in agreement on the relative negotiating value of ecosystem functions.

Hydro Action A – Recommend DOE consideration of gas caps (to provide flexibility for spill regimes) to improve life-cycle survival

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommend that Ecology adjust gas caps (match or exceed OR’s gas cap) on the Columbia River FCRPS facilities to allow flexibility to adjust spill regimes, as needed, to benefit chinook salmon and other salmonid. Applies to the Columbia and Snake River systems; may not apply elsewhere but opportunities for other facilities may exist.</td>
<td>L</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td>Estimated cost to implement (in dollars):</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):</td>
<td></td>
</tr>
<tr>
<td>• Moderate to 2017 injunction baseline spill (High proportionate to pre-2005 injunction hydro/dam actions, and could be high compared to 2008 FCRPS BiOp, if you achieve improved SARs predicted by CSS model)</td>
<td>• Spill: It was noted that $40 million annually (above BiOp) on average for spilling to current 115% forebay/120% tailrace standard; 24/7 spill increase spill to 120% tailrace only standard is estimated to cost another $20 million, or an average of $60 million total annually.</td>
<td>• Near-term decisions on 2019-21 spill for “interim” FCRPS BiOp • Longer term 2022 FCRPS BiOp will be informed by CRSO NEPA process, which will wind up in 2021.</td>
<td></td>
</tr>
</tbody>
</table>
ECY could temporarily or permanently adjust gas caps to allow for new spill regimes on the mainstem of the Columbia and Snake. Would apply to the whole mainstem below Chief Joseph.

Should consider options of WA waiving forebay cap and managing to Oregon’s existing standard, as well as both states going to 125%, other options.

Also a request to look at in-river transportation alternative to increased spill, especially in very hot, low water years like 2015. Might be part of the technical analysis and debate over efficacy of spill under certain conditions.

Comment: In near term, regional federal, state, and tribal salmon managers may have some joint recommendations this summer or fall, and recommendations here should recognize the value and relevance of discussions over 2019-2021 operations (Interim FCRPS BiOp) as well as the CRSO NEPA and 2022 BiOp processes in terms of identifying the best spill regime.

<table>
<thead>
<tr>
<th>Time for response to occur:</th>
<th>Flexible timing (market peaks) rather than 24/7 spill could reduce the cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intermediate after changes are implemented (implementation could occur as early as 2019, with first effects 2-5 years out)</td>
<td>[Can we generate costs per ratepayer of different spill scenarios? Comment that survey showed ratepayer willingness to pay more to help salmon.]</td>
</tr>
<tr>
<td>Degree of certainty:</td>
<td>Degree of Certainty: Dependent upon water year, energy markets potential trade-offs with other actions funded by BPA</td>
</tr>
<tr>
<td>• Moderate certainty that magnitude of benefit analyzed in Comparative Survival Study can be achieved, depending on approach. Low certainty if the magnitude of benefit in NOAA COMPASS model is achieved. High certainty that hydro operations that include spill for fish passage provide a benefit to juvenile survival broadly and increased prey for SRKW.</td>
<td>Find report/analysis to help understand the basis for these costs.</td>
</tr>
<tr>
<td>Comparative survival study may not clearly show improved survival with increased flow above pre-injunction flows. CSS is a life cycle basis showing that SAR does increase due to a decrease in “delayed mortality” attributed to non-spillway hydrosystem passage. Comment that Interim BiOp and regional process then NEPA will inform this action and the taskforce may not want to get too far in the weeds on particulars of spill operations. However the state’s total dissolved gas standards is the limiting factor in these other processes. If standards aren’t raised, then any additional spill agreed to through these processes would not be able to occur.</td>
<td></td>
</tr>
<tr>
<td>For FERC (PUD) dams, adaptive management processes through FERC operating plans would be required</td>
<td></td>
</tr>
<tr>
<td>Degree of alignment with current federal/state law: Varies by dam and legal processes</td>
<td></td>
</tr>
<tr>
<td>• Increase in spill % above current WA TDG standards would require approval from Ecology</td>
<td></td>
</tr>
<tr>
<td>Political/social feasibility:</td>
<td>Technical feasibility:</td>
</tr>
<tr>
<td>• There is opportunity for regional collaboration and some consensus</td>
<td>• Technically feasible</td>
</tr>
<tr>
<td>Degree to which it reinforces or leverages existing efforts:</td>
<td>Degree of certainty:</td>
</tr>
<tr>
<td>• High</td>
<td>• Unknown</td>
</tr>
<tr>
<td>Find report/analysis to help understand the basis for these costs.</td>
<td></td>
</tr>
</tbody>
</table>
NOTES ON INPUT, COMMENTS AND QUESTIONS FROM TASK FORCE ON THIS ACTION ON 6/14/18:

- For Columbia River dams, quantify the change in revenue to BPA from spill change – also overall economy, extra production.
 - Hydro work group members noted the change in revenue: $40 million annually (above BiOp) on average for spilling to 115%/120% TDG; to increase 24/7 spill to 120% tailrace-only standard is estimated to cost another $20 million, or $60 million total annually. Flexible spill to 120% or 125% TDG that allows for less spill at peak power market times may cost less.
 - At 24/7 115%/120% TDG for Calendar Year 2018: Approximately $30 million

NEEDS MORE INFORMATION:
- Impact of raising gas caps on juvenile survival
- How can dams be reconfigured/re-engineered to increase survival

Additional information (WG Meetings 2 & 3)
- Recommendations about where and when to implement each action, including sequencing (if not covered above in table)
 - Steps to take: Inventory dams and impoundments that block fish passage or otherwise impair salmon survival, overlay with priority areas, and prioritize impoundments and dams to be considered for modification or removal
 - Assess spill levels to maximize survival of juvenile chinook and raise total dissolved gas cap if needed or where appropriate to maximize survival of juvenile chinook
 ▪ Facilitate spilling to less than cap during peak market price times, in order to reduce cost of action.
 - Columbia Basin dam operation and ecosystem service benefits for SRKW should be prioritized in Columbia River Treaty re-negotiation
- Whether each action will improve conditions for all pods or a subset
 - All Pods
Hydro Action B – Review and Update standards for juvenile salmon survival

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional partners review, and where appropriate, revise standards for juvenile survival</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
</tbody>
</table>
| Need to list places where this is an opportunity, particularly outside of the Columbia system. Might make it more digestible, geographically. Existing standards will be challenging to revise (and may not need revision). It’s fair for the Task Force to understand that the metric for the performance standard is a debate. | Magnitude of benefit to SRKW (quantify if possible):
* High if current standards are not sufficient but low if there is not much increase possible
Time for response to occur:
* Intermediate to Long-term; Analysis and adoption, construction, operation changes, and adaptive management after regulatory adoption of new standards, then additional time for fish return (5-15 years depending on complexity of passage)
Degree of certainty:
* Moderate
Effectiveness depends on whether the current standards are high enough, and whether they’re being met. There may not be much room for improvement, varying from site to site. | Unknown. May require different technical approaches at different facilities. Affordability depends on the actions necessary to implement the standards. Could be very expensive to implement but the action “review and update” is not costly
Degree of certainty
* Uncertain based on unknown outcome and recommendations | Regulatory feasibility (laws, regulations and treaties— including local, state, federal, international, tribal, etc.):
* FCRPS BIOP survival standards exist and would need modification if changes are suggested
* FERC license BIOP survival standards exist and would need to be modified
* SAR standards would need to be incorporated in modified BIOPs
* 401 Water Quality Certs with fish passage performance standards would need to be amended
* Application for non-listed Chinook stocks?
Degree of alignment with current federal/state law:
* Depends if new survival standards are suggested or not, and how dramatically the deviate from current standards
Political/social feasibility:
* Depends if new survival standards are suggested or not
* Low – lengthy legal process
Technical feasibility:
* Feasible to implement actions to improve survival
Degree to which it reinforces or leverages existing efforts:
* High, particularly in FCRPS and at facilities with new downstream collectors and adaptive management in FERC licenses |
Additional information (WG Meetings 2 & 3)

- Recommendations about where and when to implement each action, including sequencing (if not covered above in table)
 - FERC Dams with fish passage survival standards in priority Chinook watersheds:
 - Northern Puget Sound
 - Baker Lake Dams (Baker River - Puget Sound Energy)
 - Floating Surface collectors
 - Skagit River Dams (Seattle City Light)
 - Jackson Dam (Sultan River- Snohomish PUD)
 - Southern Puget Sound
 - Cushman Dams (Skokomish River – Tacoma Power)
 - Floating Surface Collectors
 - Nisqually Dams
 - Lower Columbia River
 - Lewis River Dams (Lewis River – PacifiCorp, Cowlitz Co PUD)
 - Cowlitz River Dams (Cowlitz River – Tacoma Power, Lewis Co PUD)
 - Upper Columbia River
 - Middle Columbia river
 - Wanapum, Priest Rapids, Rock Island, Rocky Reach, Wells, Lake Chelan (Mid-C PUDs)
 - Washington Coast
 - Skookumchuck Dam (Skookumchuck River - TransAlta)
 - Non-FERC existing and proposed large dams with potential fish passage standards
 - Northern Puget Sound
 - Middle Fork Nooksack Diversion Dam (Bellingham)
 - Southern Puget Sound
 - Cedar/Lake Washington
 - Ballard Locks
 - Lower Columbia River
 - Toutle River Sediment Retention Structure
- Mid-Columbia
 - Roza and Chandler Irrigation Diversions (Yakima River – Roza ID) [Support expediting negotiated operational changes through YBIP]
 - Tumwater Diversion Dam (Wenatchee watershed)
- Mid-Columbia (but in Snake River Recovery Plan geography)
 - Mill Creek/Bennington dam (USACE)
- Washington Coast
 - Upper Chehalis River flood control dam
 - FERC relicensing
 - 3 Skagit River Dams (Seattle City Light – 2025) – high in naturally blocked watershed and no Chinook passage ramifications
 - S. Fork Tolt (Seattle City Light – 2028)
 - Rock Island (Chelan PUD – 2027)

- Whether each action will improve conditions for all pods or a subset
 - Depends on where implemented. Survival improvements in watersheds may benefit pods that overlap with Chinook stocks in those watersheds
Hydro Action C – Reduce predation near dams

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase survival at predation hot spots near dams/created by dams</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>• Ensure netting, sprinklers or other deterrents to predators</td>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td>Estimated cost to implement</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):</td>
</tr>
<tr>
<td>• Implement diffused release sites for juveniles by-passing a dam</td>
<td>• High</td>
<td>• Unknown</td>
<td>• Structural modifications or enhancements to existing infrastructure shouldn’t require legal process</td>
</tr>
<tr>
<td>• Deter bird predators near outfalls/ladders</td>
<td>Time for response to occur:</td>
<td>Degree of certainty:</td>
<td>Degree of alignment with current federal/state law</td>
</tr>
<tr>
<td>• Increase predator removal programs at dams</td>
<td>• Intermediate</td>
<td>• High</td>
<td>• Migratory Bird Treaty Act and Marine Mammal Protection Act create more permitting processes, or may require regulation change</td>
</tr>
<tr>
<td>• Decrease spawning success of non-native fish in reservoirs through reservoir management</td>
<td>Degree of certainty:</td>
<td>Depends on what’s already being done at each facility. Highly effective, but might already be underway. Most if not all FERC licensed dams have deterrent devices (wire, netting, sprinklers, etc.).</td>
<td>• Would also need to change classification of invasive fish that are currently considered “sport fish.” See Predation actions.</td>
</tr>
<tr>
<td>• Support efforts to keep northern pike from moving into anadromous waters</td>
<td>Depends on what’s already being done at each facility. Highly effective, but might already be underway. Most if not all FERC licensed dams have deterrent devices (wire, netting, sprinklers, etc.).</td>
<td></td>
<td>Technical feasibility:</td>
</tr>
<tr>
<td>Many dam operators are doing what they can already, very actively managing bird and pinniped predation to achieve survival standards.</td>
<td>Very important to keep northern pike from moving into anadromous waters. Check into how this relates to spill, since they’re coming from the headwaters downstream.</td>
<td>• High</td>
<td>• High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degree to which it reinforces or leverages existing efforts:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degree of certainty:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High</td>
</tr>
</tbody>
</table>

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - K & L pods would benefit the most because of Columbia River benefits, but J pod may also benefit from increased Columbia stocks moving along the outer coast.
Hydro Action D – Improve fish screens and eliminate entrainment in diversions at dams (see habitat for irrigation diversions)

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
</table>
| Where it helps provide safer passage, improve fish screens and eliminate entrainment in diversions at dams. Consolidate diversions to reduce risks to salmon. | L | Magnitude of benefit to SRKW (quantify if possible):
• Unknown but likely low considering the incremental benefit is likely low relative to how much has already been completed
Time for response to occur:
• Intermediate
Degree of certainty:
• High
Encourage consolidation of diversions – effective
In general, we’re pretty effective at this already, hard to see when incremental benefit would be.
Most if not all known public and larger private dams are in compliance and an inventory of smaller dams and the magnitude of impact is unknown so the effectiveness of increasing chinook for SRKW is probably low. | H | Estimated cost to implement
• Unknown
Degree of certainty
• Uncertain based on unknown cost and/or magnitude of this action | H | Regulatory feasibility (laws, regulations and treaties— including local, state, federal, international, tribal, etc.):
• High as these are structural modifications or enhancements to existing infrastructure that shouldn’t require legal process
Degree of alignment with current federal/state law
• High; In OR, these kinds of actions can trigger some of their passage laws, including a fairly mandatory investment on the owner’s part to bring things up to current standard.
Political/social feasibility:
• High
Technical feasibility:
• High
Degree to which it reinforces or leverages existing efforts:
• High
Degree of certainty:
• High |

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - Depends upon where implemented
Hydro Action E – Successfully reintroduce salmon into blocked areas above dams

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritize and fund re-establishment of runs into currently blocked areas above dams in those areas that can successfully produce more salmon.</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Two different scenarios: trap and haul operations would be smaller scale and fewer benefits to SRKW, while greater benefit would come from volitional passage through dams but very expensive and difficult to implement. (Ratings for E, A, I here are for volitional passage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Continue exploring, through processes already underway, reintroducing salmon above the Chief Joseph Dam.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Continue to support reintroduction of Skokomish spring Chinook.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identify if there are opportunities to support or accelerate reintroduction efforts in the Lewis and Cowlitz systems.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efforts with plans already underway (conservation focused):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Skokomish spring reintroduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Lewis and Cowlitz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Oregon Deschutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Green River Howard Hanson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cle Elum (under construction)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mill Creek and Bennington dam, Walla Walla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If people know of others, others please send to us</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat suitability needs to be assessed before reintroductions. Return on investment may be low assuming natural passage is not viable and whether or not upstream habitat is suitable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Chief Joe – if excess adults are put above it, there’s good spawning habitat in the mainstem. There’s modeling of this, and the cost-benefit looks good without additional downstream passage.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude of benefit to SRKW (quantify if possible):</th>
<th>Estimated cost to implement</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High for Time for response to occur:</td>
<td>• Unknown at this time but assessments have been or will be completed and that information will be provided; range is less than one million to over one hundred million depending upon facility</td>
</tr>
<tr>
<td>• Intermediate to Long-term Degree of certainty:</td>
<td>• High certainty unless additional revenue becomes available</td>
</tr>
<tr>
<td>• High Really depends on specific site and whether or not passive passage is possible or if active transport will be needed.</td>
<td>Degree of certainty:</td>
</tr>
<tr>
<td>Explore areas where restoration would add additional value to passage into currently blocked areas</td>
<td>• Low certainty</td>
</tr>
<tr>
<td>Some reservoirs provide cool water in the summer and flow enhancement when</td>
<td></td>
</tr>
</tbody>
</table>

Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
- Site variable and dependent upon ESA listed species in some areas. May/will require policies and agreements
- Degree of alignment with current federal and state law (versus requiring changes to laws):
 - High but unknown
- Political/social feasibility:
 - Varies but reintroducing fish above blocked areas need to consider ESA implications (e.g. moving ESA listed species to new locations with potential ESA regulation)
- Technical feasibility:
 - Site specific and variable
- Degree to which it reinforces or leverages existing efforts:
 - High
- Degree of certainty:
 - Varies from high to low depending upon site
Exploring potential passage options through NW Power and Conservation Council process – first phase, now wrapping up is feasibility and habitat analysis. Likely to move to second phase involving experiment with salmon releases and further detail work on passage technologies. Then decision about level of permanent implementation in Phase 3. Teed up in the Columbia River Treaty too. Colvilles also considering near-term releases of hatchery fish above Chief Joseph.

Lower Columbia – studies of reintroductions, particularly of spring Chinook, already done, and these are crucial parts of the regional recovery plan. Lewis and Cowlitz are high priority for SRKW. Maybe focus habitat restoration downstream of this to capture full benefit? Historically, habitat for spring Chinook was mostly above those reservoirs. There’s a lot of habitat work planned in both of those basins, and lots of productive habitat already there. Need to dial in juvenile capture-ability in those systems- key bottleneck.

Substantial good quality habitat in the Willamette – working with Corps on this. Make sure don’t forget OR in doing geographic prioritization.

Non-hydro dams:
- Juvenile passage at Howard Hanson Dam (Green River)
- Some spring Chinook benefits to Cle Elum passage
- Tieton Dam/Rimrock Reservoir passage in the Yakima Basin
- See the notes from Action A, see where they overlap with priority watersheds

Make sure climate resiliency is built into this recommendation. Think about downstream habitat improvements where necessary.

<table>
<thead>
<tr>
<th>Additional information (WG Meetings 2 & 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Whether each action will improve conditions for all pods or a subset</td>
</tr>
<tr>
<td>- Depends on where implemented</td>
</tr>
</tbody>
</table>

needed and both can buffer against climate change.
Hydro Action F – Remove structures that impound rivers of most benefit to chinook, where feasible

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove dams in locations that most benefit Chinook passage for SRKW prey</td>
<td>Magnitude of benefit to SRKW (quantify if possible): High</td>
<td>Estimated cost to implement (in dollars): High but unknown. Assessments are likely available so information is probably available for some dams</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): NEPA process underway to examine lower Snake River dam removal among other options but won’t be wrapped up until 2021</td>
</tr>
<tr>
<td>Compile a list of dams and structures that impound rivers that have been successfully removed that benefit salmon with little or no impacts to stakeholders</td>
<td>Time for response to occur: Intermediate; Response is almost immediate following implementation but SRKW benefits 3 years out</td>
<td>Degree of certainty: Low unless new revenue becomes available</td>
<td></td>
</tr>
<tr>
<td>Prioritize most effective dams to remove for SRKW recovery. Identify and prioritize those dams that are feasible for removal as near term/immediate actions. For those dams deemed less feasible currently, determine if actions could be taken to mitigate those challenges (e.g. other energy generation).</td>
<td>Degree of certainty: Highly effective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFW has an app on its website where you can search and filter by different kinds of dams and sort by watershed. Then need to apply the other socio-economic criteria.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Floberg at NOAA has been working on creating a list of dams that are “relatively” feasible to remove. Run this by the Lead Entities to check the list. Middle Fork Nooksack Diversion Dam, Chambers Creek, Whonnock, Enloe Dam, which blocks listed upper Columbia River spring chinook, recently videotaped jumping below the dam. Pilchuck Dam on Snohomish River at Granite Falls. Sullivan Lake facility also was removed. Associated with the Box Canyon Dam. Steve also will ask the regions and lead entities to verify the list of dams that have been removed. Skookumchuck</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnitude of benefit to SRKW (quantify if possible):
- High

Time for response to occur:
- Intermediate; Response is almost immediate following implementation but SRKW benefits 3 years out

Degree of certainty:
- Highly effective

Estimated cost to implement (in dollars):
- High but unknown. Assessments are likely available so information is probably available for some dams

Degree of certainty:
- Low unless new revenue becomes available

Degree of alignment with current federal and state law (versus requiring changes to laws):
- Varies by dam

Political/social feasibility:
- Varies by dam and we must be very clear that this action considers (1) every dam, (2) benefit to chinook, and (3) stakeholder considerations

Technical feasibility:
- High
<table>
<thead>
<tr>
<th>Dam? Can we talk with TransAlta about this? Might be an opportunity there.</th>
<th>Degree to which it reinforces or leverages existing efforts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider climate change. Balance the carbon emissions benefits of hydro with its effects on species. Could make a link to the climate fee/tax initiative. Funding would go to clean water and habitat projects. TF could make a recommendation on that.</td>
<td>• Certain dam removals could put in jeopardy funds for habitat work and mitigation while there are some/several dams already identified to be removed to leverage existing efforts</td>
</tr>
<tr>
<td>Consider SRKW and Chinook in proposals for new dams</td>
<td>Degree of certainty:</td>
</tr>
<tr>
<td>Proposals for Dams in spring Chinook (or fall Chinook) habitat (like Chehalis) should evaluate the effect of new dams on orcas.</td>
<td>• Highly variable</td>
</tr>
</tbody>
</table>

NOTES ON INPUT, COMMENTS AND QUESTIONS FROM TASK FORCE ON THIS ACTION ON 6/14/18:

- What dam removal projects are already under consideration?
- Is there a list of dams that could be removed even if they are still useful?
- Paul Allen Foundation/American Rivers has done an analysis; can the WG look at that list and give the TF feedback?
 - Report lists some potential dams that could be removed but was not comprehensive or consider all factors- not publicly available.
- Consider where dams are in the legal process; some already have an EIS.
- What are the unintended consequences of dam removal? Human safety, spills, etc.
- Consider potential loss of hatchery production due to less mitigation burden to produce fish.
 - This was discussed and in matrix. Also noted that if dam removal is successful, in the longer term there could be less reliance on hatchery fish due to high benefits to wild stocks.
- Consider potential loss of F&W funding due to less mitigation burden/requirements and decreased revenue generated.
- Consider unintended consequences (e.g. if ships cannot pass then what increase would arise in trains and trucks?)

Additional information (WG Meetings 2 & 3)

- Recommendations about where and when to implement each action, including sequencing (if not covered above in table)
 - Steps to take: Inventory dams and impoundments that block fish passage or otherwise impair salmon survival, overlay with priority areas, and prioritize impoundments and dams to be considered for modification or removal
 - Assess spill levels to maximize survival of juvenile chinook and raise total dissolved gas cap if needed or where appropriate to maximize survival of juvenile chinook
- Whether each action will improve conditions for all pods or a subset
 - Depends on location of dam removal
Hatchery

Note:
In addition to the SRKW TF effort, the legislature tasked WDFW with increase production in 2018/2019 – attached to budget. This project is outside of the TF charge due to timing of decisions necessary. The 2018 decisions on broodstock are happening in consultation with the co-managers and NOAA on a tight schedule now (July 2018) with input from stakeholders, HSRG, etc. right now. Interested groups are encouraged to contact Eric Kinne at DFW to provide input. SRKW Task Force considerations should take 2018 program changes into account.

Hatchery Action A – Increase hatchery production in strategic areas

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Increase hatchery production at facilities that most benefit SRKWs and apply measures to remove excess hatchery fish before they reach spawning grounds (e.g. weirs, mark-selective harvest)</td>
<td>Magnitude of benefit to SRKW (quantify if possible): • High (compare NOAA information to WDFW potential table?) • Unknowns: Dependent on survival of fish released • Not a lot of agreement on the effectiveness of this strategy Risk: Depressing wild fish survival and productivity. Time for response to occur: • Intermediate 3-10 Years (at best, based on survival)</td>
<td>Estimated cost to implement (in dollars): • $110K/1M Chinook fry • Coho and steelhead more expensive, chum cheaper • Any yearling programs are more expensive • $50K? for model integration, leverage what we already know for 2019 broodstock collection. Identify data gaps. Time- and-place goals for SRKWs, and how do we get it there for them.</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): • Administrative process (coordinate with WDFW/NOAA/Tribes/Regional Salmon Board directors)? Degree of alignment with current federal and state law (versus requiring changes to laws): • HGMPs Political/social feasibility: • Could be expectations that there are increased harvest opportunities with increased production Technical feasibility: • Aligning with regions and technical partners</td>
</tr>
</tbody>
</table>

WDFW Staff will bring decision support model to August 7th TF and August 9th Prey WG.

May also want to look at ways to increase the smolt-to-adult / marine survival of Chinook, adjust return timing and locations to align with whale needs, and increase size and age of return (would increase costs; See Action B)

Principles:
• Need to emphasize the ultimate goal is to maintain wild fish populations.
• Do not jeopardize ESA-listed stocks or wild populations generally. Also do not want to contribute to potential listings

Timeframe for hatchery production: biological response from the whales, monitor effectiveness for 10 years and then check in. LCFRB monitors annually and makes adaptive decisions.
Consider productivity of hatchery AND wild fish as a variable or metric. Metrics exist in some regional recovery plans.

Selective removal of hatchery fish is one tool for managing the potential negative interaction of hatchery fish on wild fish (limit number of hatchery fish that could spawn in the wild with wild fish).

Carefully describe assumptions and hypotheses by life stage and evaluate annually through adaptive management, in a transparent and public manner. Considerations when deciding which stocks to increase and when evaluating each hatchery population increased:

<table>
<thead>
<tr>
<th>Question</th>
<th>Degree of certainty:</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many Chinook will be available to the whales (fish available pre-terminal/before spawning grounds and near or in river fisheries)?</td>
<td>Short term – certain, longer term, depends on the affect on the wild stocks</td>
</tr>
<tr>
<td>What’s the average size and age of return?</td>
<td>High</td>
</tr>
<tr>
<td>When are the Chinook returning?</td>
<td>Short-term: Emergency situation—crude analysis required, w/high degree of uncertainty. FY 19 (5M Chinook?). No impacts on wild fish, no backsliding.</td>
</tr>
<tr>
<td>How are these Chinook distributing? Does it continue to align with whale needs?</td>
<td>Intermediate: Due diligence—more time for analysis, the more certainty no impacts to wild fish.</td>
</tr>
<tr>
<td>Juvenile carrying capacity. Are there conflicts with wild fish in estuary, nearshore and Puget Sound?</td>
<td>Long-term: Analysis including wild fish recovery should start immediately too, but will likely have little impact to SRKW recovery. Assuming successful turn around of orca—don’t see hatcheries as solution. The other Hs kick in.</td>
</tr>
<tr>
<td>Smolt-to-adult/marine survival. What are the marine survival rates?</td>
<td></td>
</tr>
<tr>
<td>Predation (does the action attract predators (-) or buffer predation (+)? How do we manage for best outcome)</td>
<td></td>
</tr>
<tr>
<td>Proportion of hatchery fish co-spawning with wild fish (pHOS). What does increased production do to increasing stray rates</td>
<td></td>
</tr>
<tr>
<td>Proportion of natural influence (pHOS + proportion of wild/natural origin fish used in hatchery broodstock or pNOB)</td>
<td></td>
</tr>
<tr>
<td>Harvest ramifications? Does more adult hatchery Chinook returning to specific areas increase (or decrease) encounter rates of wild Chinook?</td>
<td></td>
</tr>
<tr>
<td>Did increasing hatchery production provide a direct benefit to whales by increasing their food supply? (choose a few of the larger hatchery production increases. Use as index programs for</td>
<td></td>
</tr>
</tbody>
</table>

Degree of certainty:
- Short term – certain, longer term, depends on the affect on the wild stocks
- High
- Short-term: Emergency situation—crude analysis required, w/high degree of uncertainty. FY 19 (5M Chinook?). No impacts on wild fish, no backsliding.
- Intermediate: Due diligence—more time for analysis, the more certainty no impacts to wild fish.
- Long-term: Analysis including wild fish recovery should start immediately too, but will likely have little impact to SRKW recovery. Assuming successful turn around of orca—don’t see hatcheries as solution. The other Hs kick in.
the greater effort. Parental-Base Tag the fish and then see whether contribution changes over time ongoing collections of whale feces)

Need to check with salmon recovery regions – not just co-managers, HSRG and NOAA. Councils may support hatchery production through targeted habitat protection and restoration and/or hatchery production in targeted areas unlikely to compromise salmon recovery goals

Allocate funds for a study/analysis/model integration of hatchery production statewide for 2019 broodstock collection.

Lower priority areas for wild salmon recovery where you could boost hatchery production for SRKWs—focus here

Major stocks whales are consuming are hatchery stocks

Net pens were not generally supported in discussions — when adults come back, there is nowhere for them to go other than the nearest freshwater. Could this strategy work at the mouth of the Strait of Juan de Fuca? Explore this idea – net pens combined with increased fishing in local rivers to reduce hatchery fish on the spawning grounds. Net pens could both increase production or could change the way that you diversify life history – just another hatchery tool.

Yearling programs could introduce risk

Additional information (WG Meetings 2 & 3)

- Whether each action will improve conditions for all pods or a subset
 - All pods since production is likely to be increased across Puget Sound, Columbia and Outer coast.
Hatchery Action B – Improve hatchery chinook performance

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform actions in hatcheries to increase productivity, smolt-to-adult survival and/or marine survival of Chinook (including but not limited to reducing predation on hatchery fish), adjust return timing and locations to align with whale needs, increase size and age of return, and reduce potential competition with wild fish. (INSERT GEOGRAPHIC, TIMING, STOCK SPECIFICS OF WHERE THIS MIGHT BE TRIED)</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>
| Measure of success for hatcheries needs to be redefined to long window for out-migration, increase size and age of return fish. Stock and # of fish is great, but FRAM to determine pre-terminal and see what would be best for whales. | Some certainty for average % survival, less certainty for productivity of fish. Greater risk, potentially higher return and more fish. Magnitude of benefit to SRKW (quantify if possible):
- Unknown
- Could increase the benefit of Action A
- Could increase abundance even absent increased production | Estimated cost to implement (in dollars):
• Higher than current Chinook production | Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
• Administrative process (coordinate with WDFW/NOAA/Tribes/Regional Salmon Board directors)? | |
| | Degree of certainty:
• Data need regarding: Brood stock management and spawning protocols to increase fish size; timing and location of smolt release to reduce predation and competition with natural fish; rearing strategies to improve survival in natural environment; net pens for endemic stocks | Degree of certainty:
• High | Degree of alignment with current federal and state law (versus requiring changes to laws):
• No issues id’ed | |
| | Time for response to occur:
• Long term? 10+ years for larger impacts (shorter timeline to see results of test on smaller scale?)
• Short term survival could decrease | | Political/social feasibility:
• No issues id’ed | |
| | Degree of certainty:
• | | Technical feasibility:
• Need scientific design to test effects on returns, predation, etc.
• Disease risk – yearling production of Chinook?
• Facility will have to be larger – so technical feasibility depends on the individual facility. Would want to test in a few locations where it is easy before you make changes to current production
• Need to work with co-managers, NOAA and salmon recovery regions to understand risk to wild stocks | |
| | | | Degree to which it reinforces or leverages existing efforts:
• | | |
| Will it change pinniped or bird behavior so that they stay to feed all the time? Research will take time. Could a pilot in some hatcheries determine efficacy of limiting predation or would confounding factors limit ability to detect success? | If increases production in the process would need to ensure that any additional hatchery production compliments existing salmon recovery plans and accounts for ecosystem response of additional hatchery fish. Degree of certainty: Low |

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - Depends upon where implemented
Harvest

Note: Chinook harvest has been decreased significantly over the last few decades and relative to the overall abundance of chinook available to SRKW, further reduction in harvest may have little benefit. Vessel disturbance associated with fishing is considered by the Vessel work group.

Harvest Action A – Limit chinook harvest in key SRKW foraging areas

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit harvest of Chinook in areas important to SRKW foraging</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>There used to be hot spot foraging areas (west side of San Juan Islands) – these are shifting. This action may not be easy to implement as the whales are no longer predictable. Canada has just implemented this action – may want to better understand why they thought this would work. It is important to distinguish between vessel noise and the taking of Chinook. All actions in deference to and respect of tribal treaty rights Common theme is to share conservation burden equally if fishing is reduced Sliding scale concept. Very conservative harvest in low abundance years and more liberal harvest in high abundance years</td>
<td></td>
<td>Estimated cost to implement (in dollars): • High (cost to fisheries – economic cost, cultural cost) • Low implementation cost Degree of certainty: • High</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): • Impossible to implement with co-managers? Case law would not support. • Tribal treaty rights concerns • May require WDFW Commission policy change Additional information and policy/legal review needed Degree of alignment with current federal and state law (versus requiring changes to laws): • Low alignment due to treaty rights Political/social feasibility: • North of Falcon fishing season setting is already challenging Technical feasibility: • SRKW locations won’t overlap nicely with current Marine Areas. Degree to which it reinforces or leverages existing efforts: • Existing efforts are underway in Canada – look to see if they are effective</td>
</tr>
</tbody>
</table>
Degree of certainty:
- There is low certainty that this would be politically or even legally feasible with the co-management framework.

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods
Harvest Action B – Subsidize lost/closed fishing opportunity

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsidize or compensate fishers to not fish</td>
<td>L</td>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td>H</td>
</tr>
<tr>
<td>Commercial fishers across all marine areas and recreational charter. For the sport fishery in general there is no mitigation that has occurred in the past, however, in the Columbia Basin, there is an endorsement ($8.75) required to purchase a salmon/steelhead license with proceeds used by WDFW to comply with ESA requirements for those fisheries (monitoring, enforcement, etc).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This action would likely be focused on the pre-terminal Puget Sound areas. Could be implemented immediately.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concerns expressed relative to recreational and tribal fisheries, but should we remove them from subsidy? Provide compensation to sport fishing industry perhaps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especially relevant during a low abundance year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Magnitude of benefit to SRKW (quantify if possible):**
 - Low – Sport fishery in Marine Area 7 is 3,500 chinook in summer (July-Sept).
 - Total chinook ocean harvest North of Cape Falcon, OR, varies annually and has been about 95,000-130,000 per year in recent years.
- **Time for response to occur:**
 - Immediate (0-3 years)
- **Degree of certainty:**
 - Medium in biggest stocks (can use abundance index to predict in biggest stocks)

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods.
Harvest Action C – Reduce incidental harvest of chinook

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce non-targeted fisheries’ impact on salmon, including limiting gear types that increase mortality and by-catch (Action 5)</td>
<td>M Brief explanation of rating: Magnitude of benefit to SRKW (quantify if possible): • Low (Pacific) – West Coast hake trawl fishery has a chinook limit of 11,000 • Medium (North Pacific) – Bering Sea pollock trawl fishery has a chinook cap of 60,000 Time for response to occur: • Immediate (0-3 years) Degree of certainty: • There is a NMFS Biological Opinion that was just updated in December 2017 addressing the bycatch of salmon (chinook and coho) in West Coast groundfish fisheries (including hake/whiting trawl). The trawl fisheries are 100%</td>
<td>M Brief explanation of rating: Estimated cost to implement (in dollars): • Possibly high – The economic value of these fisheries is in the billions – fishers wouldn’t want to risk targeted harvest to save a few Chinook • Costs of reduced fisheries would be much more of an effect than improved bycatch mitigation or avoidance might be. Research could be costly (M)</td>
<td>M Brief explanation of rating: Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): • WDFW Commission policy change may be required • Need to work via Regional Fishery Management Council (NPFMC and PFMC) processes who manage these fisheries. • Want excluder device requirement – need better designs for equipment • Difficulty in requiring a specific design or device is that one size does not fit all, and maintaining the flexibility for individuals to experiment and find the configuration that works best for them is important for fishery viability Degree of alignment with current federal and state law (versus requiring changes to laws): • New by-catch goals were just set with the pacific fisheries Political/social feasibility: • High if $$$ is provided Technical feasibility: • High if research improves designs</td>
</tr>
</tbody>
</table>

Focused on trawl fisheries in pacific and north pacific that intercept Chinook (mid-water targeting hake or pollock)

This action does not include forage fish – that would be under the integrated forage fish action.
observed and observers collect coded wire tag samples to determine the origin of salmon bycatch. The occurrence of bycatch events, particularly in the whiting fishery, is difficult to predict and is considerably lower what the salmon fisheries catch. The groundfish trawl fisheries are closely monitored with real-time catch information, and include prescribed harvest limits and measures (e.g., time and area closures) that can be implemented inseason in the event that bycatch rates and/or numbers are higher than anticipated.

Degree to which it reinforces or leverages existing efforts:
- Current competition for new innovations that limit by catch

Degree of certainty:
- Medium

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods.
Harvest Action D – Negotiate reductions in AK and Canadian fisheries

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negotiate reductions in AK and Canadian fisheries to allow more Chinook to reach WA waters</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>The U.S. Pacific Salmon Commissioners are well aware of the chinook interceptions off Alaska and BC and those are major factors in the re-negotiation of the Chinook Annex. Note: The results of the negotiations are being finalized and should be publicly available soon, and are expected to include reductions in chinook harvest for both Alaska and BC over the next 10 years.</td>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td>Estimated cost to implement (in dollars):</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):</td>
</tr>
<tr>
<td></td>
<td>• Dependent upon amount of reductions and how implemented</td>
<td>• Lost fisheries/economy</td>
<td>• International treaty with no re-opening, negotiated over 10 year period</td>
</tr>
<tr>
<td></td>
<td>Time for response to occur:</td>
<td>• Likelihood of compensation for lost fishing could be more than $50 million</td>
<td>Degree of alignment with current federal and state law (versus requiring changes to laws):</td>
</tr>
<tr>
<td></td>
<td>• Long-term (10+ years)</td>
<td></td>
<td>• Would have to reopen Chinook annex – right now not possible</td>
</tr>
<tr>
<td></td>
<td>Degree of certainty:</td>
<td>Degree of certainty:</td>
<td>Plan for next negotiation now. Expand on what could look like now?</td>
</tr>
<tr>
<td></td>
<td>• High</td>
<td>• High</td>
<td>Political/social feasibility:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical feasibility:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degree to which it reinforces or leverages existing efforts:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• SRKW are being considered in Chinook annex. Need to include a summary of actions being included in the re-negotiated treaty and what specific actions are intended to relate to SRKWs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degree of certainty:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High</td>
</tr>
</tbody>
</table>

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods
Harvest Action E – Reduce marine harvest of chinook and transfer opportunity to terminal areas (rivers or areas beyond SRKW foraging areas)

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce marine harvest and transfer opportunity to terminal fisheries while chinook abundance in increased (Action 7) Would affect all marine pre-terminal fisheries. An exemption for tribes is not a preferred solution. Work Group recommends the TF not pursue this action because it is an allocation debate but rather suggest to others willing to consider voluntary adjustments</td>
<td>L-H Magnitude of benefit to SRKW (quantify if possible): - Depends on action details and annual abundance of chinook - Highest benefit would occur if reduced harvest in times and areas that encounter chinook stocks preferred by SRKW, particularly in low chinook abundance years - Low to medium benefits, depending on time and area, expected in high chinook abundance years Time for response to occur: - Immediate (0-3 years) Degree of certainty: - Low</td>
<td>M Estimated cost to implement (in dollars): - Economic impacts to fisheries Degree of certainty: - High</td>
<td>L Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): - Tribal treaty concerns – e.g., vast majority of Makah Tribes fisheries are non-terminal - Reallocation inter-tribal. Would disproportionately affect some tribes more than others Degree of alignment with current federal and state law (versus requiring changes to laws): - Co-management might not support this Political/social feasibility: - It is not a 1:1 fish for fish Technical feasibility: - High Degree to which it reinforces or leverages existing efforts: - Never has been tried Degree of certainty: - High</td>
</tr>
</tbody>
</table>

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods.
Harvest Action F – implement size limits on chinook

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement slot size limits to get larger fish on the spawning grounds (put a maximum size limit on catch; Action 9) This would be implemented throughout the Puget Sound, Coast, and Columbia.</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td>Time for response to occur:</td>
<td>Estimated cost to implement (in dollars):</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):</td>
</tr>
<tr>
<td>Low/Medium?</td>
<td>Long term (10+ years for full implementation)</td>
<td>Need increased enforcement</td>
<td>High</td>
</tr>
<tr>
<td>Degree of certainty:</td>
<td></td>
<td>Degree of certainty:</td>
<td>Low</td>
</tr>
<tr>
<td>Release mortality and survival data is inconclusive; grading through caught fish in search of the allowable size means more fish would be handled</td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Not clear where or whether age selective fishing mortality is occurring – troll or sport or net? Biologically, size selection in hatchery programs might provide a larger potential change, on the same time frame</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods.

Magnitude of benefit to SRKW (quantify if possible):
- Low/Medium?

Time for response to occur:
- Long term (10+ years for full implementation)

Estimated cost to implement (in dollars):
- Need increased enforcement
 - Degree of certainty: Low

Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
- WDFW Commission policy may be required
 - Degree of alignment with current federal and state law (versus requiring changes to laws):

Political/social feasibility:
- Expect significant stakeholder feedback
- Require co-manager agreement
- In Federal waters - PFMC

Technical feasibility:
- High

Degree to which it reinforces or leverages existing efforts:
- Have this on the books in Canada

Degree of certainty:
- Low
Habitat

Note: The State of Washington adopted Extinction is not an Option (by RCW in 1999) as the strategy to recover ESA-listed salmon and conserve those that are not listed. The central tenant of the strategy is for regional salmon recovery organizations to form, develop scientifically sound and locally supported recovery plans, pursue approval of the plans by the state and federal government and then implement, track and report. The 7 salmon recovery organizations are intimately familiar with the needs and priorities for salmon (all species) in their regions and they have habitat and non-capital “projects” identified and prioritized. The regional organizations are currently working to develop region-specific high priority chinook projects based on current recovery plans for consideration by the Task Force for the list of five general actions for habitat that are listed below. Those priorities are located in the Box folder and reviewers should refer to them.

Habitat Action A – Increase implementation and enforcement of habitat protection regulations

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase the implementation & enforcement of existing local, state and federal habitat protection regulations</td>
<td>H</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>SEE REGIONAL RECOVERY ORGANIZATION LETTERS FOR SPECIFIC GEOGRAPHIES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effectiveness
- Magnitude of benefit to SRKW (quantify if possible):
 - High (extremely difficult to quantify)
- Time for response to occur:
 - Immediate (0-3 years)
- Degree of certainty:
 - This may not be additive but is crucial in future losses.
 - Future permits that are issued could correct past implementation problems
- Important to maintain protections and regulations, but this will only maintain

Affordability
- Estimated cost to implement (in dollars):
 - Understaffing issue across most regulatory agencies - More enforcement, permitting, compliance staff $$
 - Applying the actual regs properly in the Hydraulic Code (as an example) doesn’t cost anything
 - Cost to fully fund staff needed for compliance and enforcement could be scalable and prioritized

Ease of Implementation
- Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
 - Administrative complexity – applying the laws as they are written may not always be easy
 - Consistency among agencies is not known
 - Enforcement has some feasibility issues – if criminal allegations are made, they often are not prioritized by the prosecutor’s offices.
 - Risk of being sued by wealthy waterfront landowners
- Degree of alignment with current federal and state law (versus requiring changes to laws):
 - Aligned

Political/social feasibility:
- Politically hard decisions
- Politicians get blow back for hard decisions

Need clear guidance/direction on expectations, roles and responsibilities for agencies and co-managers, regarding enforcement of regulations. Takes political will.

As scalable to high priority watersheds:
- For marine HPAs, encourage more consistent application of existing hydraulic code and guidelines, so that close to 100% of issued permits comply with statute and guidelines.
- Improve HPA compliance and effectiveness by enhancing WDFW regional biologist capacity in priority watersheds.
- Support enhanced civil enforcement authority in the HPA program. Current civil authority is limited and criminal enforcement authorities are not resulting in resolution or fish and habitat benefit. Enhanced civil authority would better match what local governments, Ecology and DNR currently utilize.
- DFW has used grant funds to pilot increased civil compliance under current law, and have seen many successes increasing compliance with added capacity to visit sites before and during construction. Fund compliance inspectors, increase WDFW effectiveness monitoring funding.
- Ensure Shoreline Development Permits and Variance Permits pursuant to Shoreline Master Plans enforce the “need” for armoring when reviewing replacement of bulkheads.
- Fund increased staffing to communicate to local governments and land management agencies the riparian conditions necessary for the long-term survival of salmonids through the full range of environmental conditions, consistent with PHS riparian guidelines.
- Fund staffing for public awareness efforts around salmon, killer whales, and land use decisions.

<table>
<thead>
<tr>
<th>NOTES ON INPUT, COMMENTS AND QUESTIONS FROM TASK FORCE ON THIS ACTION ON 6/14/18:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What regulations is this action referring to specifically? (GMA, SMA? CAOs?) If there are state, federal, local then separate them out?</td>
</tr>
</tbody>
</table>

- the status quo and will not improve habitat for salmon. Focus should be acquisition and restoration.
- Correctly doesn’t cost anything. Checking and following up does.
- Consistency among agencies is not certain.

- May be cultural issues within agencies that need to be addressed that deal with permitting and enforcement.

Technical feasibility:
- Need monitoring for compliance and effectiveness.

Degree to which it reinforces or leverages existing efforts:
-

Degree of certainty:
- Depends on scope of changes. Limited changes to implementation may have limited effect on SRKW.
• Which habitat are we most concerned about for Chinook/SRKWs? Prioritize recommended actions here.
• Salmon recovery council priorities speak to these issues. Look there.
• What are the effects of current exemptions? Where is that important?
• Organize an evaluation of regulations at the local, state, and federal levels.
• Differentiate between enforcement and implementation. (Note that Penny changed language to try to provide clarity... more discussion needed?)
• Across the boards, appropriate application of hydraulic code is failing. Issue is both implementation and enforcement. Easier to implement existing laws well? Need to put some attention on WDFW laws.
• HPA compliance – enhance civil authority. See notes from Justin Allegro (WDFW)
• May need to look at mitigation for cumulative impacts

Additional information (WG Meetings 2 & 3)
• Whether each action will improve conditions for all pods or a subset
 All pods.
Habitat Action B – Enhance or change if needed, habitat protection regulations

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance/change habitat protection regulations, especially for key Chinook/SRKW habitats or areas</td>
<td>H</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>SEE REGIONAL RECOVERY ORGANIZATION LETTERS FOR SPECIFIC GEOGRAPHIES</td>
<td>Magnitude of benefit to SRKW (quantify if possible): • High</td>
<td>Estimated cost to implement (in dollars): • Need to consider the degree to which there would be economic loss (indirect as opposed to direct implementation cost) • Costs for policy work are not extremely high</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): • Administrative complexity</td>
</tr>
<tr>
<td>As scalable to high priority watersheds: • Support a requirement for Net Ecological Benefit for Growth Management Plans and Shoreline Management Plans. • Evaluate ramifications and benefits of limitations around fair market value in state acquisition of priority chinook habitat acquisition, offer recommendations to legislature.</td>
<td>Time for response to occur: • Intermediate (3-10 years)</td>
<td>Degree of certainty: • High</td>
<td>Degree of alignment with current federal and state law (versus requiring changes to laws): • Legislative code changes?</td>
</tr>
<tr>
<td>Need to review how mitigation is used to off-set impacts, and whether that should be an option</td>
<td>Degree of certainty: • High</td>
<td>Important to maintain protections, but this will only maintain the status quo and will not improve habitat for salmon.</td>
<td>Political/social feasibility: • Politically hard decisions • Economic loss • Limits development</td>
</tr>
<tr>
<td>Regulations (GMA, SMA) were not written to protect habitat. Perhaps apply hydraulic code differently.</td>
<td>Goes hand-in-hand with Action A.</td>
<td></td>
<td>Technical feasibility: • Need better understanding of how to integrate salmon recovery priorities into land use planning • Need monitoring for compliance and effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degree to which it reinforces or leverages existing efforts: • More difficult than implementing laws already on the books</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degree of certainty: • High</td>
</tr>
</tbody>
</table>
Notes:

- GMA/SMA planning – net ecological benefit requirement as opposed to no net loss?
- Fair market value requirements for acquisition of lands need to be addressed. Barrier to acquisition currently is inability for acquisition to compete with bidders.
- Single family exemptions are the highest priority
- No net loss is not sufficient
- Aquaculture has few regulations and has impact that needs to be considered

Additional information (WG Meetings 2 & 3)

- Whether each action will improve conditions for all pods or a subset
Habitat Action C – Acquire habitat

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquire important Chinook habitat for permanent protection</td>
<td>H this action is scalable so could be a range from L to H</td>
<td>L this action is scalable so could be a range from L to H</td>
<td>Likely H because of willing seller/willing buyer but L if funds and/or willing landowner are unavailable</td>
</tr>
</tbody>
</table>

SEE REGIONAL RECOVERY ORGANIZATION LETTERS FOR SPECIFIC GEOGRAPHIES

- **Magnitude of benefit to SRKW (quantify if possible):**
 - High
- **Time for response to occur:**
 - Immediate (0-3 years) to Intermediate (3-10 years) depending on site and level of development/conversion risk
- **Degree of certainty:**
 - Acquisition is critical. Regulations (GMA, SMA) were not written to protect habitat.
 - Consider especially the quality of the habitat.
- **Estimated cost to implement (in dollars):**
 - Need to focus in on the funding piece—across recommendations
- **Degree of certainty:**
 - Land prices may be prohibitive in some key areas

Additional information (WG Meetings 2 & 3)

- Whether each action will improve conditions for all pods or a subset

Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):**

- Degree of alignment with current federal and state law (versus requiring changes to laws):
 -
- Political/social feasibility:
 - Legislative/political will may be challenging
- Technical feasibility:
 - Difficult given current land use, high land prices, and number of willing sellers in key locations
- Degree to which it reinforces or leverages existing efforts:
 -
- Degree of certainty:
 - Need map of where development is likely to happen and habitat to acquire/protect most important areas for Chinook to benefit SRKW
Habitat Action D – Accelerate habitat restoration

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerate habitat restoration, including fish blockages in areas most beneficial to SRKW</td>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
</tbody>
</table>
| ALSO CONSIDER: ‘Increase and/or improve Hydro habitat mitigation for salmon recovery’ | Magnitude of benefit to SRKW (quantify if possible):
- High
| Time for response to occur:
- Intermediate (0-3 years) for blockages and big projects that need to start now, Long-term (10+ years for restoration) | Action is scalable so range from L to H | Large-scale, increased funding essential to get more projects completed
Estimated cost to implement (in dollars):
- More than $50 million/year above current investments is needed to accelerate restoration | (know what to do, it is hard, takes a long time, needs more resource and capacity) | Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
- Funding sources don’t allow for the time it takes to sequence issues on the ground
| Degree of alignment with current federal and state law (versus requiring changes to laws):
- Need public education for why it is important
- Alignment of all necessary implementation projects is difficult – need more capacity | Political/social feasibility:
- Need to align approaches of many different species recovery goals
- Need to consider climate change and resiliency | Technical feasibility:
- Need to align approaches of many different species recovery goals
- Need to consider climate change and resiliency | Degree to which it reinforces or leverages existing efforts:
- All recovery plans have scientific backing and many have priorities for |

SEE REGIONAL RECOVERY ORGANIZATION LETTERS FOR SPECIFIC GEOGRAPHIES

Lower Columbia –
1) Best use of available habitat through reintroduction in Lewis and Cowlitz (captured in hydro)
2) About 50 miles of F/W production potential – reaches are specified and costs have been laid out ($3M/year for 10 years)
3) Estuarine restoration. Used by all populations. Accelerate work to achieve targets. 3300 acres over the next 5 years (SUBS, Bachelor Island, Chinook, etc)
| Capacity is already maxed out on the implementation side, even if money is allocated for restoration | across Washington to be effective. Habitat will cost a lot of money, but we should not limit ourselves, because that is what it will take. The few remaining projects are complicated: PSAR large capital list SRFB list Feasibility lens is applied to these lists—so what if we thought even larger? I.e. get I-5 off Nisqually Delta Highlight the strategies for orca and where the projects are located in the realm of a floodplain, for example | habitat restoration already identified • NW Power CC Fish and Wildlife Program currently funds many restoration projects – SRKW priorities could be added? • Current Chinook recovery goals do not include Orca needs – may need to review all recovery goals and increase the recovery targets • Could tie to incentives – makes restoration easier and compliance more likely (A & B) Degree of certainty: • Need to consider questions at project/watershed level around effectiveness |

NOTES ON INPUT, COMMENTS AND QUESTIONS FROM TASK FORCE ON THIS ACTION ON 6/14/18:

- Location is very important.
- Can we execute habitat restoration that can help us with fishery recovery as well as SRKW recovery?
- Accelerate culvert replacement schedule.
- The Task Force will need to look at implementation capacity for steeply accelerating habitat restoration.
- Consider using condemnation for habitat restoration in areas identified as critically important for SRKW recovery.
- Do we need to do more intrusive restoration projects to get quicker results?
- Do we need to change the way we allocate restoration funding to focus on particular areas for SRKW and/or Chinook benefit?
- If we don’t do the habitat protection piece then we will lose more habitat that we gain through these investments.
- Check out NPCC website – good info on climate change work – ranked the different Chinook watersheds for resiliency
• Authorize permanent application of and increased funding for the ESRP small grant program for highest priority projects for shoreline projects – could be folded in with PS focus on shorelines
• Refer to specific restoration projects that WDFW and NOAA have been developing for Pacific Salmon Treaty conversations.
• PS NERP Tier 1 projects are Nooksack, Skagit, Duckabush ($460M). State would have to match.
• Middle Fork Nooksack – could be fully funded by PSAR this year – waiting to see. Also been discussed in hydro discussion
• Floodplains is a huge focus of recovery plans
• Political pressure needed for the Skokomish floodplain passage issue
• Information that is being compiled through other efforts needs to be considered – Columbia Basin Partnership (Liz to send). Ecosystem based goals – not just harvestable

Additional information (WG Meetings 2 & 3)
• Whether each action will improve conditions for all pods or a subset
Habitat Action E – Create additional habitat protection and restoration incentives for landowners

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create additional or bolster existing habitat protection and restoration incentives for landowners</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>• Evaluate fair market value ramifications for priority chinook habitat acquisition</td>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td>Estimated cost to implement (in dollars):</td>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):</td>
</tr>
<tr>
<td>• Enhance funding for enhanced wildlife forage within estuaries</td>
<td>Time for response to occur:</td>
<td>Degree of certainty:</td>
<td>• Degree of alignment with current federal and state law (versus requiring changes to laws):</td>
</tr>
<tr>
<td>• Increase funding for Floodplains by Design</td>
<td>Degree of certainty:</td>
<td></td>
<td>• Political/social feasibility:</td>
</tr>
<tr>
<td>• Increase funding for flexible incentives for restoring riparian on agricultural lands</td>
<td></td>
<td></td>
<td>• Technical feasibility:</td>
</tr>
<tr>
<td>Need integration b/w salmon projects, flood reduction for farms. W/ competing stakeholder interests, what incentives would move a stakeholder toward yes.</td>
<td></td>
<td></td>
<td>• Degree to which it reinforces or leverages existing efforts:</td>
</tr>
<tr>
<td>Currently, landowners compensated for lost property. But also generational component from lost income from the land. Need to compensate landowners for “growing” fish over time. Need to develop these kind of non-traditional tools.</td>
<td></td>
<td></td>
<td>• Degree of certainty:</td>
</tr>
</tbody>
</table>

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
Predation

Predation Action A – Remove or alter artificial habitat that is benefiting predators

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove or alter artificial haul outs or breeding locations so they are not as attractive to predators (pinnipeds and birds; for predatory fish see Hydro actions)</td>
<td>Varies by stock/ geography and predator type</td>
<td>Magnitude of benefit to SRKW (quantify if possible): - Pinnipeds: Uncertain due to new data becoming available on pinniped numbers and diet (which will give a more current and area-specific estimate of predation levels-Fall 2018 for WDFW and Canada DFO work to be completed). If alterations to haulouts are done the animals may shift distribution and numbers to other locations (anecdotal information suggests this is the case). A pilot approach may be appropriate to better determine efficacy. - Birds: Low; concerns that the animals will redistribute to other areas that may or may not be desirable. Though birds have been successfully dissuaded before, it has been difficult to quantify impacts</td>
<td>Estimated cost to implement (in dollars): - Pinniped: Variable cost, depending on approach. Up to $250k to retrofit dock in Astoria. Need to add in pre and post monitoring costs - Birds: Have call into FWS for estimate. - Both: High cost to be a substantial action. There would be an</td>
</tr>
<tr>
<td>WDFW is creating maps the overlay SRKW priority prey stocks with map of haul out sites and breeding bird colonies that would affect adult and juvenile migration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of alignment with current federal and state law (versus requiring changes to laws): - Pinnipeds: No changes needed to remove but permitting required. For controlling the creation of new haul outs what about private property? May be able to limit this through permitting requirements under WAC from DNR. - Birds: No changes needed to remove but permitting required. Limiting creation of artificial habitat might be possible. However, in some cases there might be economic or other reasons that indirectly lead to creation of habitat or substrate conditions that are conducive to nesting birds (e.g., building a warehouse with a flat roof may economical, but may result in a nest site for Caspian Terns). Modifying these practices may require
corridors to determine specific alteration locations.

Potential Opportunities (birds):
- Terns, cormorants, gulls: Rat Island, east sand and rice islands; rooftops in Bellingham bay, etc.
- Pigeon Guillemots: Hood Canal bridge
- Pinnipeds: boat docks, piers, pilings, riprap, static reservoirs
- (predatory fish): boat docks, piers, pilings, bouys, constrictions in salmon migratory routes,

of these actions to previous dissuasion events. Columbia River different from Puget Sound- don’t focus on birds in Puget Sound. Not clear that birds are impacting salmonid populations in Puget Sound. Also due to huge foraging distances this action is unlikely to be effective.

Time for response to occur:
- Intermediate (3-10 years)

Degree of certainty:
- Low/Medium: Uncertainty about where pinnipeds and birds may shift to after being excluded from some areas.
- Uncertain about bird impact to salmonids in Puget Sound.

additive effect of each site modification.

Degree of certainty:
- Uncertain until more examples.

INPUT, COMMENTS AND QUESTIONS FROM TASK FORCE ON THIS ACTION FROM 6/14/18:
- Where are there artificial haul outs?
 - These haul outs are log booms at mills, at boat docks, navy facilities, dredge spoils, sand bars, etc. Almost all haul outs in Puget Sound from Olympia to Bellingham are artificial. In Strait of Juan De Fuca, San Juan Islands and Coast mostly natural haul outs are used.
- Are there any easy wins?

Degree of certainty:
- Implementation is likely possible in many places but complicated or delayed due to permitting required under current laws.

- Economic incentives or other non-regulatory measures. Regulatory measures could cause additional conflict.

Political/social feasibility:
- Easier than lethal removal
- Pinnipeds: social issues of encouraging lands/property owners to accommodate modifications to prevent haul outs (e.g., some have incentive to increase haul out availability for tourism). Conservation status on state lands may restrict with opportunity to modify haulouts (e.g., DNR NRCA).
- Birds – social conflicts with conservation groups for certain actions

Technical feasibility:
- Pinnipeds: May not be possible to move them even if we try?
- Birds: Has been successful in past for birds. Doing this in Puget Sound may be different than doing this in Columbia.

Degree to which it reinforces or leverages existing efforts:
- Pinnipeds: Not directly but follows marine survival study results we have at this point
- Birds: ACE EIS- cormorants; inland avian predation plan. Existing (ongoing) action involves a different geography and largely fresh water environment of Columbia River. Not clear that a Puget Sound effort reinforces or leverages other efforts.

Degree of certainty:
- Implementation is likely possible in many places but complicated or delayed due to permitting required under current laws.
If we can use social attraction (shown to be effective) and nest site enhancement in Grays Harbor (there are some promising candidate sites – Sand Island NAP, Whitcomb Island NAP, two islands off the mouth of Johns River) we could potentially attract Caspian Terns away from Puget Sound. Easy win if Caspian Terns move away from Puget Sound. Potential complication if Caspian Tern population increases in Grays Harbor and then expands back into Puget Sound.

- Are there differences in how structures present in the Columbia River versus Puget Sound (e.g., Hood Canal Bridge versus Bonneville Dam)?
 - Yes, for birds there are differences. Along the Columbia River the birds are using dredge spoil islands and other islands. In Puget Sound, Caspian Terns are nesting on a natural island, for one year on a floating barge, on a waterfront dock, perhaps on a flat roof; cormorants are nesting on a rock jetty and now there is a 400-nest colony in coniferous trees in south Puget Sound.

- Ensure that we aren’t harming transients (by removing their food resource) while we try to help SRKW.
 - Could this help transients eat more pinnipeds? Perhaps but they do not eat as many pinnipeds as many think. Would need a lot more transients to change pinniped population levels. (source: Benjamin Nelson)

- There are some companies that specialize in deterrents... consider these for figuring out potential affordability.
 - Attempting to contact USFWS and USACE because they have been involved in doing this for birds along the Columbia River.
 - Attached list of companies that specialize in deterrents.

- Consider any impacts that removal might have on forage fish artificial habitat
 - Our greatest understanding of the Puget Sound marine food web comes from a period when the system and the various component pieces had been substantially altered from the pre-European or early-European period. Consequently, management actions could easily result in species responses in the ecological system that we do not expect or that we can't fully anticipate. A trophic cascade may have occurred 100 years ago, and local actions may transition things back somewhat to the period prior to that event. Do we know what that condition looked like and all the bits and pieces that will occur in the future as we strive for that desired state? “Recovery” of Puget Sound may not produce a linear “signature” such that stages of progression could be situations where not only are changes unexpected, but actually unstable and/or undesirable. This is potentially true for any of the actions.

 - Atlantis food web model being developed for Puget Sound by NOAA (within the year) that will give decision makers better tools to understand the ecosystem effect of specific management actions.

Additional information (WG Meetings 2 & 3)

- Whether each action will improve conditions for all pods or a subset
 - Depends on location of where action is done-see above and then determine this
Predation Action B – Remove predators using lethal means in specific locations

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethal removal to benefit specific runs and stocks (pinnipeds, birds, and/or other predatory fish)</td>
<td>Pinnipeds: L - Uncertain, Bird: L - Uncertain and varies by location, Fish: M - Could have a large effect at certain locations, depending on fish assemblage</td>
<td>Pinnipeds: M</td>
<td>Regulatory feasibility (laws, regulations and treaties— including local, state, federal, international, tribal, etc.):</td>
</tr>
<tr>
<td>WDFW producing maps that overlay SRKW priorities systems pinniped haul out sites and piscivorous bird breeding colonies to determine where to priority to alter or remove. Fish: Columbia basin distribution of bass, walleye, and Pikeminnow is throughout the system, except not much walleye below Bonneville. Northern Pike are not found below Grand Coulee Dam and are not currently predators on salmonids in the Columbia downstream of Coulee dam but do consume kokanee, trout and other</td>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinnipeds: due to new data becoming available on pinniped numbers and diet (which will give a more current and area-specific estimates of predation levels- Fall 2018 for WDFW and Canada DFO completion). Other data indicates that pinniped predation is generalized and not localized, meaning that removal from a specific foraging or haul out area may not greatly affect the number of pinnipeds using them. There is also uncertainty about how lethal</td>
<td>Estimated cost to implement (in dollars):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinnipeds: Canada for estimates? (Lisa Jones follow up) 1M dollars a year? Lethal removal of sea lions in the Columbia costs $300k/yr. Puget Sound is different and likely more costly. $685k estimate (plus enforcement costs) for pilot study to determine effectiveness.</td>
<td>Pinnipeds: L (at Bonneville, could do more w/out permit, if it were deemed effective and funding were avail.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birds: contact USFWS and USACE for estimates.</td>
<td>Birds: M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish: Total annual cost of the Pikeminnow program that is funded by BPA is $3.5 million. Each of the three PUDs also runs a Pikeminnow program. Northern Pike suppression program estimated at $1-$2M</td>
<td>Fish: M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Pike suppression program estimated at $1-$2M</td>
<td>Regulatory feasibility (laws, regulations and treaties— including local, state, federal, international, tribal, etc.):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pinnipeds: Permits/authorization required from NOAA due to Marine Mammal Protection Act and already exists for some actions; other permission or permitting may be required depending on ownership (e.g. Wildlife refuges). Amount of allowed lethal take under MMPA limited to certain level (Potential Biological Removal, PBR) of each stock, which may or may not be enough for desired impact. Depending on this factor, a change in MMPA may be required to take additional animals over and above PBR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Birds: Permits/authorization required from USFWS due to Migratory Bird Treaty Act; other permission or permitting may be required depending on ownership (e.g. Wildlife refuges). In addition, seems likely USFWS would approve this option only after nonlethal options had failed or impractical. Consequently, feasibility of proposed project will be based in part on other elements of a strategy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish: Few regulatory constraints for removal or suppression programs. Request F&W Commission reclassify non-native predatory fish?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Degree of alignment with current federal and state law (versus requiring changes to laws):</td>
<td></td>
</tr>
</tbody>
</table>
| | | Pinnipeds: Depends on how many you want to take within each stock. Could take PBR levels within each stock. If need to take more animals then a need change in MMPA.
salmonids above Grand Coulee. Their potential as future predators is very large. Any program should include containment costs. Could map the dams/reservoirs, Chinook pinchpoints that are most problematic and the tributaries that are most impacted. Overlay with SRKS priority systems.

Removal would impact the food web and therefore if “freed up fish” would really go to SRKW or another animal/factor in system.

- Birds: If birds are responsible for a very small level of predation on salmonids there would be uncertainty about effectiveness.
- Fish: Piscivorous predators of primary concern for salmon/steelhead are invasive non-natives (Northern Pike), non-native warm water species (Walleye, bass), and native fish (northern pikeminnow). A high priority and potential big impact is Northern Pike if they move into the anadromous zone in the Columbia River. Suppression of

minimal cost to be effective in short term. Northern Pike are not currently in the anadromous zone of Columbia River so this is a preventative program. There is currently no impact. Would be a direct impact if salmon are reintroduced above Grand Coulee Dam. Degree of certainty:

- Pinnipeds: Removal operations are likely costly
- Birds: Fairly certain that this action would be costly, because a likely condition of the permit would be to conduct monitoring to assess population response (of the birds), and to assess success of population management on salmonids
- Fish: Northern Pike are not found below Grand Coulee Dam. Funding is for containing them in Roosevelt, so they do not become a predation

- Birds: USFWS can authorize this. But their general approach to lethal action is last resort after other actions have been attempted and found ineffective. Leading with lethal management instead of nonlethal will almost certainly be ineffective due to USFWS (and stated Pacific Flyway Council) practices and the threat of legal challenges.
- Fish: State game fish laws modifications may be needed for certain species

Political/social feasibility:

- Pinnipeds and Birds:
 - Social tolerance for lethal removal is a factor.
 - Actions to change MMPA or MBTA would likely be met with strong opposition from conservation groups.
 - Lawsuits would be likely for pinnipeds and birds, possibly for game fish as well.
 - Some WG members believe that once information about potential benefit to SRKW and Chinook by doing this action is out to public and decision makers that many of these implementation difficulties would be resolved. Other WG members believed that these complications would still exist and affect implementation greatly. Knowing that bird population management was being done to benefit salmonids in the Columbia River did not prevent legal challenges over the last 15-20 years.
 - Pacific flyway council policy on piscivorous bird management exists – nonlethal first, develop management plans, coordinate stakeholders, use science, monitoring, etc, and exhaust all other possibilities before any lethal action.
- Pinnipeds:
 - Salmon advocates, anglers, etc. increasing concern over pinniped population increases since MMPA implementation. Concerns about cost of not doing it?
Northern Pike is high priority and high magnitude action.
- For Pinnipeds and Fish: A pilot to determine efficacy in one area may help to detect success but may be difficult due to several confounding factors.

Time for response to occur:
- Intermediate (3-10 years)

Degree of certainty:
- Pinnipeds: Low and certainty of current problem statement and best ways and places to address pinniped predation should be strengthened by WDFW analysis and Canada new study available in late summer/fall 2018.
- Birds: Low
- Fish: Low/Medium
- Pinnipeds, Birds, Fish: Detecting problem downstream. They are not currently predators on salmonids in the Columbia, but their potential as future predators is so large that any program should include containment costs. Walleye and smallmouth bass are non-native predators considered game fish and managed by sport fishing regulations that in some areas, limit how many and what size may be harvested.

- Due to uncertainty about efficacy of a lethal control program and food web consequences, questions were brought up that public and WG members may be in two camps: 1) Need more information to be sure before taking action or 2) Need to take the action in order to provide the data needed to understand efficacy.

- Fish:
 - Northern Pikeminnow program successful with public support
 - Awareness and public concern over Northern Pike growing, funding is major constraint currently
 - Walleye and bass fishers somewhat out of alignment with predator reduction/removal programs and varies across geographic location.
 - Bass and walleye anglers are aware that predation on salmonids is a localized issue with those two species, in comparison with Pikeminnow predation which is widespread, and pike predation, which is expected to be widespread. Bass and walleye anglers are much more supportive of local control programs at identified predation hotspots. They tend to be more opposed to general programs as predation problems are not broadscale. In other words, there would be more angler support for localized actions than for population level maintenance actions for these two species.

Technical feasibility:
- An ongoing comprehensive predator management program or programs would be needed to maintain any potential benefits to Chinook and SRKW. Potential that costs of a “maintenance level” program may be less than costs of program to make immediate and near-term progress.

Degree to which it reinforces or leverages existing efforts:
success in salmon recovery would be contingent upon other actions for ecosystem recovery

- Aligns with Puget Sound salmon recovery (not explicitly in plans though) since aligns with current knowledge from marine survival study.
- Predation actions included in Columbia River FCRPS BiOp.
- Birds: leading with lethal instead of nonlethal is misaligned with USFWS (and stated Pacific Flyway Council) practices.

Degree of certainty:
- Low; See varying opinions under social/political.
- Low certainty of implementation if lethal is start point; much increased certainty when lethal action are component of a strategy where nonlethal actions are attempted first.

NOTES ON INPUT, COMMENTS AND QUESTIONS FROM TASK FORCE ON THIS ACTION ON 6/14/18:

- How big is the problem with predators, compared to other prey-limiting factors (e.g., losses to dams and to human harvest)?
 - Important to recognize that predation actions aren’t and "or" relative to other recovery actions, they are an "and" – i.e., not in lieu of other actions but as a suite of actions.
 - New data becoming available on pinniped numbers and diet (which will give a more current and area-specific estimate of predation levels) by Fall 2018 from WDFW and partners and Canada DFO.

Additional information (WG Meetings 2 & 3)

- Recommendations about where and when to implement each action, including sequencing (if not covered above in table)
 - Pinnipeds: Geographic overlay with SRKW priorities - being produced.
 - Birds: Geographic overlay needed with SRKW priorities being produced. Some bird species can move substantial distances from breeding sites to foraging areas (Caspian Terns: 50 miles; American White Pelicans: 150-200 miles), so these overlays would be specific to the different predator species.
 - Fish: Geographic overlay needed with SRKW priorities

For Pinnipeds and Fish: Could a pilot determine efficacy in one area or would confounding factors limit ability to detect success?

- Whether each action will improve conditions for all pods or a subset
 - Depends on location of where action is done
Predation Action C – Establish new baseline predator population abundance levels

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
</table>
| Lethal removal in order to establish new baseline population levels (pinnipeds, birds, and/or other predatory fish) | Pinnipeds: M, Birds: M, Fish: M | Magnitude of benefit to SRKW (quantify if possible):
- Pinnipeds: Uncertain due to new data becoming available on pinnipeds and prey populations (DFO) suggests that 50% decrease in abundance of predators and continued action to maintain this level needed to detect a change in predation levels.
- Fish: Uncertain Other data indicates that pinniped predation is generalized and not localized, meaning that removal from a specific foraging or haul out area may not greatly affect the number of pinnipeds using them. There is also | Pinnipeds: H - Uncertain, Birds: H - Uncertain, Fish: H - Uncertain | Estimated cost to implement (in dollars):
- May be more expensive than Action B due to more widespread work.
- Pinnipeds:
 - Canada for estimates? 1M dollars a year?
 - Review historic information to better understand the cost and effect of widespread pinniped control programs through bounty.
 - May not be so expensive if we engage the citizenry.
 - Costs could be reduced if individuals were allowed to take animals (e.g. as a bounty)
- Birds: L
- Fish: M | Pinnipeds: L, Birds: L, Fish: M | Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
- Pinnipeds: L: Not currently possible under Marine Mammal Protection Act. MMPA only allows lethal removal up to a certain level (Potential Biological Removal) of each stock, which will not be enough to reach the overall reduced population levels this action calls for. Also, lethal take by any individual person (not permitted state, federal, tribal agencies) is not currently allowed, so this change would need to be made if that method is desired. Tribes have some opportunity now, but is not publicly supported.
- Birds: L: Permits/authorization is required from US Fish and Wildlife Service authorization due to Migratory Bird Treaty Act; other permission or permitting may be required depending on ownership (e.g. Wildlife refuges). In addition, it seems quite likely the USFWS would approve this option only after nonlethal options had failed or were found to be impractical. Consequently, feasibility of the proposed project will be based in part on the other elements of a strategy.
- Fish: M: Columbia River treaty and flows would be affected if doing modifications of spawning at reservoirs. FCRPS. ESA Permitting issues regarding netting and removal – bycatch on listed fish.
- Example: Changing the status of non-native warm water fish to take it off the game fish list. But there |
uncertainty about how lethal removal would impact the food web and therefore if “freed up fish” would really go to SRKW or another animal/factor in system.

- Birds: if birds are responsible for a very small level of predation on salmonids there would be uncertainty about effectiveness. Studies from some localized areas indicate very high level of smolt predation.
- Fish: Even when lakes have been rotenoned, seems like not long before the fish return. Predator removal has been shown to trigger the compensatory response and make a bigger problem. Need to follow up with more information on potential effect of removal. Analyze how much predation pressure would result from certain levels of predator removal. The magnitude of action for fish would be need to be much larger than scoped for pinniped/birds. Lower baseline for fish.

<table>
<thead>
<tr>
<th>Birds: planning, EIS, actual lethal action, comprehensive monitoring (10 yr?) back of envelope estimate - $10 mil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish: Total annual cost of the Pikeminnow program that is funded by BPA is $3.5 million. Each of the three PUDs also runs a Pikeminnow program.</td>
</tr>
<tr>
<td>by BPA</td>
</tr>
<tr>
<td>Northern Pike suppression program estimated</td>
</tr>
</tbody>
</table>

would be pushback from anglers. But status change may not affect fishery management. Develop a rule mechanism to allow folks to legally dispose of warm water fish in Col mainstem.

Degree of alignment with current federal and state law (versus requiring changes to laws):
- Pinnipeds: Depends on how many you want to take within each stock – could take PBR levels within each stock. If need to take more or allow individual take then need change in MMPA
- Birds: USFWS can authorize this. However, their general approach to lethal action is as a last resort after other actions have been attempted and found to be ineffective. Leading with lethal management instead of nonlethal will almost certainly be ineffective due to incompatibility with USFWS (and stated Pacific Flyway Council) practices and the threat of legal challenges.

Political/social feasibility: L
- Pinnipeds and Birds:
 - Social tolerance for lethal removal is a factor making this difficult.
 - Lawsuits would be likely for pinnipeds and birds. Risk of litigation seems likely to be higher because some might argue the management is less targeted and has a bit of randomness to it.
 - If take was allowed by any individual, this action would have higher social costs
- Pinnipeds:
<table>
<thead>
<tr>
<th>For Pinnipeds and Fish:</th>
<th>Time for response to occur:</th>
<th>Degree of certainty:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pilot to determine efficacy in one area may help to detect success but may be difficult due to several confounding factors.</td>
<td>Intermediate (3-10 years)</td>
<td>Pinnipeds: Low and certainty of current problem statement and best ways and places to address pinniped predation should be strengthened by WDFW analysis and Canada new study available in late summer/fall 2018.</td>
</tr>
<tr>
<td>Birds: If birds are responsible for a very small level of predation on salmonids there would be uncertainty about effectiveness.</td>
<td>Fish: Primary concern for salmon/steelhead are invasive non-natives (Northern Pike), non-native warm water species (Walleye, bass), and native fish (northern pikeminnow). A high priority and potential big impact is Northern Pike if they move into the anadromous zone in at $1-$2M minimal cost to be effective in short term. Northern Pike are not currently in the anadromous zone of Columbia River so this is a preventative program. There is currently no impact. Would be a direct impact if salmon are reintroduced above Grand Coulee Dam.</td>
<td></td>
</tr>
<tr>
<td>Fish: Power generation (revenue) may be an issue with reservoir modification but reducing spawning success for walleye and bass in particular may have significant immediate benefits. May also impact recreation depending on level of modification.</td>
<td>Degree of certainty:</td>
<td>Pinnipeds: Removal operations are likely costly</td>
</tr>
<tr>
<td>Technical feasibility:</td>
<td>Fish: unknown/promising re reservoir modification, worth learning more about.</td>
<td></td>
</tr>
<tr>
<td>An ongoing comprehensive predator management program or programs would be needed to maintain any potential benefits to Chinook and SRKW. However, once levels are initially reduced it may be less effort to maintain them. Potential that costs of a "maintenance level" program may be less than costs of program to make immediate and near-term progress.</td>
<td>Degree to which it reinforces or leverages existing efforts:</td>
<td>Aligns with Puget Sound salmon recovery (not explicitly in plans though) since aligns with current knowledge from marine survival study.</td>
</tr>
<tr>
<td>Salmon advocates, anglers, etc. increasing concern over pinniped population increases since MMPA implementation. Concerns about cost of not doing it. Due to uncertainty about efficacy of a lethal control program and food web consequences questions were brought up that public and WG may be in two camps: 1) Need more information to be sure before taking action or 2) Need to take the action in order to provide the data needed to understand efficacy?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical feasibility:
- An ongoing comprehensive predator management program or programs would be needed to maintain any potential benefits to Chinook and SRKW. However, once levels are initially reduced it may be less effort to maintain them. Potential that costs of a "maintenance level" program may be less than costs of program to make immediate and near-term progress.
- Fish: unknown/promising re reservoir modification, worth learning more about.

Degree to which it reinforces or leverages existing efforts:
- Aligns with Puget Sound salmon recovery (not explicitly in plans though) since aligns with current knowledge from marine survival study.
the Columbia River. Suppression of Northern Pike is high priority and high magnitude action. Uncertain how many would need to be removed to be effective.
- Pinnipeds, Birds, Fish: Detecting success in salmon recovery would be contingent upon other actions for ecosystem recovery

- Fish: If fully funded can be effective. If regulations protecting non-native game fish are relaxed, we may see some localized reduction in predation.

- Predation actions are included in Columbia River FCRPS BiOp.
- Birds: leading with lethal management instead of nonlethal is misaligned with USFWS (and stated Pacific Flyway Council) practices.

Degree of certainty:
- Medium; Working Group is more certain that implementation would be difficult (more than for targeted lethal removal) due to social/political reasons and changes needed in MMPA

Additional information (WG Meetings 2 & 3)

- Recommendations about where and when to implement each action, including sequencing (if not covered above in table)
 - Statewide

- Whether each action will improve conditions for all pods or a subset
 - All pods because action is statewide
Predation Action D – Identify and implement new or emerging technology to non-lethally remove predators

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employ new non-lethal hazing or exclusion techniques</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
| New, unknown, prototype or other experimental non-lethal hazing or exclusion techniques need researched, assessed and possibly encouraged | Magnitude of benefit to SRKW (quantify if possible):
- Pinnipeds: Low, Unknown?
- Birds: as in other responses to proposed actions this would be low, because the Puget Sound pressure on salmonids from birds seems likely to be so low.
Time for response to occur:
- Intermediate
Degree of certainty:
- Need information on previous discussions, studies and trials | Estimated cost to implement (in dollars):
- Pinnipeds:
- Birds: Cost will be specific to methods used. Some methods require ongoing maintenance (disruptive flagging), field efforts to dissuade (disturbing birds from the nest area; egg oiling), or field efforts to attract (social attraction). Other approaches may require one-time actions (vegetation management). These have been used along the Columbia R. or in an attempt to recruit away from the Columbia R.
Degree of certainty:
- Pinnipeds:
- Birds: strategies will be dependent on local conditions; flagging may be required on rooftop nests, vegetation management | Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.):
- Pinnipeds:
- Birds: being used currently along the Columbia River, so seems like practical approach
Degree of alignment with current federal and state law (versus requiring changes to laws):
- Pinnipeds:
- Birds: being used currently along the Columbia River, so seems like practical approach
Political/social feasibility:
- Pinnipeds:
- Birds: Not entirely clear. If approach is local and birds have other places to nest that are secure and free of conflict it seems like there would be better prospects for political/social acceptance.
Technical feasibility:
- Pinnipeds:
- Birds: many methods field tested and being used along the Columbia River.
Degree to which it reinforces or leverages existing efforts:
- Pinnipeds:
- Birds: Not sure, because involves different regions/environments. |
Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - Depends upon if effective and where implemented

<table>
<thead>
<tr>
<th>might be best on a dredge spoil island, etc.</th>
<th>Degree of certainty:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Pinnipeds:</td>
</tr>
<tr>
<td></td>
<td>• Birds: Fairly high</td>
</tr>
</tbody>
</table>
Forage Fish

During the July 25 Prey WG Meeting, members chose to pull forage fish out as a separate category. If the Task Force decides to further pursue forage fish actions, members will work to develop more information, including quantitative and geographic information, for the matrices. Because these forage fish actions are one step removed from benefiting SRKW (they more directly affect Chinook) the potential effectiveness of these actions for SRKW recovery are a little less certain.

Forage Fish Action A – Increase forage fish through habitat protection and restoration

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect and restore marine nearshore and shoreline habitat to increase forage fish populations</td>
<td>H</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>• Forage fish are primary diet of Chinook</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• When forage fish are abundant, predation on chinook appears to decrease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnitude of benefit to SRKW (quantify if possible):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increases in Forage Fish will support Chinook which will in turn help SRKW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time for response to occur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Intermediate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of certainty:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated cost to implement (in dollars):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Same as habitat protection/restoration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of certainty:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See habitat actions—ease of implementation in many ways depends on location.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of alignment with current federal and state law (versus requiring changes to laws)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political/social feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical feasibility:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PSNERP has provided good maps for where prime forage fish habitat exists in the Puget Sound; ESRP, Early Marine Survival Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree to which it reinforces or leverages existing efforts:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reinforces habitat actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of certainty:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods
Forage Fish Action B – Reduce forage fish harvest

<table>
<thead>
<tr>
<th>Action, including time and place for implementation</th>
<th>Effectiveness</th>
<th>Affordability</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase populations through reducing forage fish harvest in marine waters of Washington</td>
<td>H</td>
<td>H?</td>
<td>M</td>
</tr>
<tr>
<td>Early marine survival study connects low abundance of forage fish with poor survival of salmon (need to confirm and/or caveat)</td>
<td></td>
<td>Estimated cost to implement (in dollars): Need to assess economic value of the industry</td>
<td>Ease of implementation in many ways depends on location. Regulatory feasibility (laws, regulations and treaties—including local, state, federal, international, tribal, etc.): Will affect tribal allocation Degree of alignment with current federal and state law (versus requiring changes to laws) Political/social feasibility Technical feasibility Degree to which it reinforces or leverages existing efforts Degree of certainty</td>
</tr>
<tr>
<td>Magnitude of benefit to SRKW (quantify if possible): Increases in Forage Fish will support Chinook which will in turn help SRKW Time for response to occur: Intermediate Degree of certainty: H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional information (WG Meetings 2 & 3)
- Whether each action will improve conditions for all pods or a subset
 - All pods